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Abstract

DNA computing. Some NP-hard problems have been solved by DNA computing with low er time com plexity than conventional com puting.

Using a small quantity of DNA molecules and little experimental time to solve complex problems successfully is a goal of

However, this advantage often brings higher space complexity and needs a large number of DNA encoding molecules. One example is
graph coloring problem. Current DNA algorithms need exponentially increasing DN A encoding strands with the growing of problem size.
Here we propose anew DNA alorithm of graph coloring problem based on the proof of four-color theorem. This alsorithm has good prop-
erties of needing a rehtively small number of operations in polynomial time and needing a small number of DNA encoding molecules (we
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need only 6R DN A encoding molecules if the number of regions in a graph is R).

Keywords:

Adleman'" described the first successful experi-
ment with standard tools of molecular biology to solve
a 7-vertex instance of Hamiltonian Path problem. By
using molecular techniques to execute computational
operations Adleman extended the conventional way
of performing and looking at computations greatly and
made a great step to the “sub-micro” computer. DNA
computing appeals to many researchers in the past 12
years =

The four-coloring problem is closely related to
the famous four-color theorem. Coloring problems are
generally NP-hard problems. DNA computing has
great advantages in the resolution of NP-hard prob-
lems” . Al of the current DNA algorithms of
graph coloring problems have polynomial time com-
plexitys but there are two difficulties which we can-
not overcome. The first one is that the encoding
molecules they need are all exponentially increasing

(371 I fact,

with the growing of problem’ s size
we know that the amount of molecules in one tube is
limited so it is difficult to solve big-size problems
with these algorithms. The other difficulty is that
these algorithms often need complicated experimental
operations to generate resolution spaces[ 13-
Enlightened by the idea of “1ib” which is the key
of proof of the four-color theorem, we introduce the
concept of “rib group” in this paper, and we prove
that any edge 3-coloring of a smooth triangulation can

*

DNA computing,. NP-hard problem graph coloring problem.

be covered by a rib group. Based on this concept we
present a new DNA algorithm for edge 3-coloring
which can be converted to vertex 4-coloring. The al-
gorithm has not only polynomial time com plexity but
also a small number of encoding molecules which is
6n if the graph has n regions. Our algorithm needs
not complicated operations to generate resolution
spaces, it requires about R+ 13 operations comparing
with previous O (n + m ' and O (log (n) +
n)'P, here R is the number of regions, n and m
are numbers of vertices and edges of a graph. It is
more realizable for processing big size problems com-
paring with other algorithms.

1 Rib group and smooth triangulation

A graph G consists of a finite set V' (G) of ver-
tices a finite set £ (G) of edges, and an incidence
relation between them. One edge is incident with two
vertices, called its ends. A triangulation is one graph
whose regions are all triangles. Without generality, a
graph can be converted to a triangulation by the addi-
tion of edges. And a coloring of triangulation can be

easily converted to a coloring of its origin graph > '

Definition 1. If one triangulation whose every
triangle is incident to at least other two triangles, we
call it a smooth triangulation.

If one edge of a smooth triangulation is incident
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to only one triangle, we say it is on the boundary of
the smooth triangulation. For a map, every city (or
country) can be regarded as vertex and the incidence
of two cities (or countries) can be connected by one
edge, consequently, by adding edges it is converted
to atriangulation. Furthermore by deleting those sin-
gle regions and regions which are incident with only
one region, a triangulation can become a smooth tri-
angulation. We will focus on the coloring of smooth
triangulation in this paper.

Definition 2 * ' . A graph G consists of a finite
set V(G) of vertices and k: V(G)—{1, 2,3,4} is
amapping. For every edge of G, if it is incident to
vertex u, v, and k(u)7Zk(v), then we say G is
four-colored, and ¥ is called a four-coloring of G.

Definition 3 * ' . A graph G consists of a finite
set E(G) of edges, and k; E(G)—>{1,0,— 1} is a
mapping. For every vertex of G, if it is incident to
edges e, f, and k(e)Z k (f), then we say G is

three-colored, and k is called a three-coloring of G.

Definition 4> " (Fig. 1 (a)). Let H be a
smooth triangulation, and k a three-coloring of it,
then we call a series g s g1» =% Fpp g a {1, — 1}

linear rib if it satisfies the following constrains;

-1 0 1
1
(@
1
=1 0
0
-1 0 1
| =1
0
1 -1 1 —1
-1 0 =1
-1 0 1 0
1

(b)

Fig. 1. Three coloring of graph (a) is composed of three linear
tibs, they construct one 1ib group. Three coloring of graph (b) is
composed of two linear ribs and one circular rib, they construct an-

other’rib grodp.

1) go» g1» s g, are different edges of H;
2) ris r2 -+ 1y are different regions of H;
3) go» g+ are on the boundary of H;

4) 0 i< t, r;is incident to g, and g;;

5) O<l<t9 K(g[)i()Q and 1<l<t9 K:(gl)i
(g1

Definition 5 (Fig. 1(b)). Let H be a smooth
triangulation, and ¥ a three-coloring of it then we call
a series gos F1s @1s =+ Fis g a {1, — 1} circular rib if

it satisfies the following constrains:

1) go» g1» ***» g, are different edges of H;

2) rys Fys -+ 1y are different regions of H;

3) g, g, are not on the boundary of H;

4) 0<<i<<t—1, r;isincident to g1 and g,
and r;is incident to g0, g—1;

5)0<l<t9 K?(gl»)i(), and()<i<t9 K(gl)i
k(gi—1).

Using the same method, we can define {1, 0},
{—1, 0} linear rib or {1, 0}, {— 1, 0} circular rib.
They have the same properties because they are at
symmetrical position, we take { 1, — 1} rib as our
study target for convenience.

Property 1. For any coloring of a smooth trian-
gulation. two different ribs have not a common re-

Definition 6 (Fig. 1). A group of ribs which
cover all regions of H is called a rib group. In this pa-

pers we discuss only {1, — 1} rib groups.

Theory 1. For any coloring of smooth triangula-
tion, there is at least one rib group.

Proof. It is enough to prove any region of H be-
longing to one rib. Let k be a three-coloring of G.
And one region r whose edges e, f, g are colored by
I, —1, O respectively. H is a smooth triangulation,
so 7 is incident to at least two other regions, suppos-
ing they are ri, r2. Without generality, suppose ri
is incident to edge f of 7, then colors of the other
two edges of 7 are — 1 and O respectively. If fis one
of the edges of 71 whose color is —1, fis not on the
boundary of H. Because H is a smooth triangulation,
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f1 must be incident to another region of H, say r,.

So 1, and 7| have one common edge f;. The other
two edges of 7, are 1 and O respectively. Note that
the edge colored by 1 is f,. Continuing this proce-
dure, we can find the edge of one region colored by 1
or —1 is on the boundary oris just e. If it returns to
e, a circle is formed, we call it a {1, —1} circular

rib.

If the last region has one edge which is on the
boundary, we define this edge fi» and note that the
band beginning from e and ending at f,, is a semi-
tib, erfr firy--r,fms if eis onthe boundary of H,
then erfr f 7y -7,fn is a rib. If not, e is incident
to another region of H, we can find another semi-rib
beginning from e and ending at another edge which is
on the boundary of H. Combining these two semi-
ribs a complete rib is formed and obviously 7 belongs
to this rib. Because one region belongs to only one

. . . 11,12
rib, ribs are not intercrossing' "'

, we can say that
H is covered by a group of ribs which are not inter-

crossing. That is to say, there is a 1ib group.

Suppose H have [ 1ib groups, and the size

(number of regions) of ith rib group is m;, i=1, 2,
-5 I, then every rib group can represent 3> 2"

kinds of coloring by considering three kinds of ribs

{19 0}9 {17 _1}3 {_19 0}3 then the number of all
!
coloring is 23>< 2™,

i=1

2 DNA algorithm of threecoloring of graph

The four-coloring theorem has proved° ™" that
every graph has at least one four-coloring and one
three-coloring. Our DNA algorithm is under the exis-
tence of three-coloring.

2.1 DNA coding of a graph

A ccording to the definition of smooth triangula-
tion, one region has at most one edge on the bound-
ary. Forexample (Fig. 2), if the ith region has one
edge e, and it is incident to the jth and the kth re-
gions through common edges ¢;. ¢; respectively.
The code of the ith region has two classes: (i) If one
end of its code is e;» then the other endis ey or e;.
Every encoding molecule encodes information of one
region and two edges. The middle segment of it en-
codes region 7, and two ends of it encode e; and e or

e;(see Fig. 2(c)). (i) If any end of its encoding

molecule is not e;, then its two ends are ey and ¢,
as the dot curve indicates in Fig. 2 (a). Similarly,
the middle segment of the molecule encodes region i,
and ends of it encode ey and € (Fig. 2(b)). Simul-
taneously, color of edges must be encoded in the
molecule, but color of two edges is different in the
same molecule, for example, they can be 1, —1 or
— 1, 1 ordinarily. In order to form a rib, we should
encode three directions of one region (Fig. 2(a)), ev-
ery direction needs two encoding molecules, then one
region must be encoded with six molecules consider-
ing the different colors in the same molecule.

(a)

(b)

Color of
X GATC edge ¢, .
1 Color of
X | CTAG| goe e,
©
¥ GGATCC |Color of . R
CCTAGG | edgee; ! X CTAG e((i)g(;r:,\,

Fig. 2.
posing the region has one edge e on the boundary, we can get two

(a) The coding of the ith region has two classes. Sup-

classes of encoding styles If oneendof its codeis e, then the other
end is e, or e, as the solid curve indicates; if any end of its code is
not e, thenits two ends are e; and ¢, as the dot curve indicates.

(b) The second class of encoding molecules. (¢) The first class of
encoding molecules. Here X and Y are two segments which are de-

signed to regulate mokcular kngth.

For the purpose of operation on encoding
molecules, we insert two restriction endonuclease site
BamHI and Mbo 1 (Fig.3). A linear rib and circular
rib can be incised to two molecules with two 4-base
sticks respectively by the corresponding enzyme at
two sites. These sticks are ready for next Watson-
Crick reaction.

We take region i as an example to understand
our encoding strategy. The smooth triangulation has
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5.« GGATCC---3’ 5"..|GATC +--3"
3%--CCTAGG"--5' 3%--CTAG|---5'

(@) (b)

Fig. 3. (a) BamH I restriction endonuclease site; (b) Mbol re-

striction endonuclease site.

regions i, j, k, and region i is incident to j and k.
The length of every encoding segment in one molecule
is determined by some rules which we will give at the

end of this section.

Encoding molecules of region i are represented
by:
[ Y| GGATCC| kel ri] | k(e CTAGI X)

D)

[ Y| GGATCC| k(e | ri) | k(e CTAG! X
@)

X1 GATC| k(eI rj] | k(e CTAGI X
3

Here [ ] and | NNN) denote a double stranded
and single stranded DNA molecules respectively;
and ( denote 3’ sticky end on the upper strand and
lower strand respectively. We use | to separate two
neighboring functional segments, X and Y are two
segments which are designed to regulate molecular
leng th.

We must indicate that if a region has no edge on
the boundary, it cannot be encoded by representation
(D) and (2). Tis six encoding molecules are all like
representation (3). Watson-Crick reaction can occur
between two sticks which satisfy the following rules:
(i) they encode the same edge; (i) they encode the
same color; (iii) they have complementary endonu-
clease site.

Now we analyze the appropriate length of encod-
ing molecules. Suppose | X| is the length of segment
X . If functional segments of encoding molecules satisfy
the following formulas, Watson-Crick reaction will
happen and all correct rib groups will have the same
length (n regions) which is helpful to extract correct
rib groups by biochemical operation; (i) | X[ —1 ¥|
=1; GD |kl =l kel =1; Gi) [ kel =
x|, Tkepl=IYI.

We can regulate the length of functional seg-
ments to satisfy natural biological reaction conditions.

2.2 Experiment of DNA coloring algorithm

First,
graph into a tube and self-assembly reactions among

we put all encoding molecules of one

molecules will occur in the tube. Sticks will hybridize
with other sticks if they are complementary. At last
reactions will end when these big molecules have no
sticks, in other words, molecules become possible
ribs. That is to say, all encoding molecules assemble
into long dsDNA strands whose two ends are seg-
ments like the left of representations (1) or (2).
Then we put DNA ligase into this tube and the com-
plete double strands are created. In the strands, the
resulting rib regions and edges occur alternatively,
and colors of edges incident with the same region are
different. In order to avoid these resulting molecules
mixed with missmatched DNA strands we add DNA

exonuclease to degenerate missmatched DNA

strands.

Next, we process the linear rib and circular rib
with different restriction endonucleases, their two
ends will become 4-base sticks which randomly self
assembly each other. The outcomes are all potential
rib groups. After this step, molecules come into being

a resolution space in tubes. Then we continue:

(i) Separating molecules w hich encode linear ribs
from those which encode circular ribs by low melting
agarose gel electrophoresis.

(ii) Collecting all molecules which cannot pass
through gels and putting them into tube #;. Collect-
ing all molecules which enter into gels by DNA Gel
Extraction Kit and putting them into tube ¢,.

(iii) For ti: firstly degenerating these circular
molecules into circular ssDN A and extracting them by
affinity purification systems using primers X |
CTAG| k(e ). Pooling all molecules extracted to a
chip whose codes are (X| CTAG]| K(e,-j)‘ (prepared
previously ). Reactions happen between probes and
molecules after reactions are complete, taking out
the chip and putting it into another tube which is
added with endonuclease BamH 1. BamH 1 cut cir-
cular ribs to linear ribs. Resulting strands have two
ends with 4-base sticks in the tube. For f7: putting
endonuclease Mbo 1 into the tube, two sticks of linear
ribs were formed by this enzyme. (iv) Mixing solu-
tions of #; and 7,, and adding DNA strands [ X|
(GATC| and[ X]| GATC). By lowering down tem-
perature and renaturing, all sticks of ribs and those
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short DNA strands will complement with others w hen
they satisfy Watson-Crick rules. After that a ligase is

added, and the complete strands are generated.
Finally we generate all 1ib groups from ribs:

(1) We extract DNA strands whose lengths are
equal to n encoding molecules of the region by sodium
dodecy sulfate-poly acry lamide gel electrophoresis.

(ii ) Rising

molecules and extract all DNA molecules which pass

temperature to degenerate all
through every region at least once by affinity purifica-
tion using {r;| as the primer.

(iii) The final results are those molecules which
pass every region once and only once. Collect all these
molecules and read the color they encode.

2.3 Reading of color on DNA chips

We can use DNA chips whose probes are comple-
ment of DNA molecules which encode all edges and
their colors to read color of the graph. Corresponding
to the probes, we call rib group target molecules. We
use two different kinds of fluorescein which can acti-
vate each other to tag target molecules and probes re-
spectively. One kind of fluorescein is tagged at 3" end
of target molecules and the other tagged at 5 end of
probes. Here the length of probes is variable as we
have showed previously that the length of our encod-
ing molecules depends on the needs. When target
molecules and probes complement with each other,
fluorescein can be activated and fluorescence occurs.
We use PCR to extend rib groups, let them react on
the chip and then read chips using a fluorescence de-
tector.

The above-mentioned are only {1, —1} b
groups, in fact { 1,0}, {— 1,0} rib groups can be dis-
cussed similarly. Because of symmetry, it is enough
to substitute { 1, — 1} with {1, 0} or {— 1,0} to get
other two kinds of rib groups and all coloring of a
graph.

3 Transfer between three-coloring and four-
coloring

In the proof of four-color theorem, the vertex
four-coloring problem has been transferred to the edge
3-coloring problem. This substitution is supported by
the following theorem:

Theorem 1777, A triangulation, H is four-col-

oring if and only if it is three-coloring. This theorem
has two meanings: giving a three-coloring of a trian-
gulation, we can find a four-coloring of it, and vice
versa. For instance, if we know a three-coloring of
H, for any edge e, if it has two vertices u and v,
we can construct the following corresponding four-
coloring;

—1 {kCu), k(v)}
Pe)=15 0 {klu) k(y))
1 {kCu) k(v)}

{1, 2} or{3,4}
{1, 3} or{2,4}
{1, 4} or {2, 3}

4 An example of three coloring and simula-
tion of algorithm

Generally DNA com puting must be accomplished
by biological experiments, but it is time- and labor-
consuming. We can take computer simulation as a
substitution. In recent years, computer simulation of
DN A encoding and biological experiments has speeded
up the development of DNA computing. In this study
we simulated the experiment of three-coloring of a
triangulation which is generated from Beijing map.

Beijing has 18 districts and for convenience we
regard four central districts as a whole, then we get a
map with 15 districts (Fig.4(a)). For the reason of
transition from coloring regions to coloring vertices of
graph, we let one vertex represent a district, and
edges represent the contiguity between the districts.
We get a graph which can be transformed into a tri-
angulation by adding edges just as we have described
previously. Then the problem of coloring Beijing map
is transferred to a problem of coloring a triangulation
with 20 regions, 15 vertices and 34 edges.

Fig. 4.
2, Changping 3, Huairou; 4, Miyun; 5 Shuny; 6, Pinggu; 7,
Haidian; 8 Mentougou; 9, Shijingshan; 10, Center 11,
Chaoyang; 12, Tongzhou; 13, Fengtai; 14, Fangshan; 15, Dax-

Transform of Beijing map into trnangulation. 1, Yanqing

ing.

We found 1907 ribs which include 1822 linear
ribs, and 85, circular ribs and these 1ibs formed rib
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groups finally in the computer simulation using M at-
lab7.0. 4. Because simulation is time-consuming, we
have not found all rib groups but instead we found a
part of them (if necessary, you can find all rib groups
using our programs). For example, there are 82 rib
groups which are composed of two ribs. It means that
we can find at least 492 three-coloring for Beijing map
simultaneously. And we found that most ribs have
middle-size (12—16) regions, and a small number of
ribs have fewer regions or many regions.

250t

1901 ribs in all
200f

150

1001

Quantity of ribs

50

8 10 12 14 16 18 20
Length of ribs

0 2 4 6

Fig. 5.

regions, only a small number of ribs have less regions or many re-

Distribution of numbers of ribs; most ribs have 10— 16
gions.
5 Discussion

We propose here a new DNA algorithm of graph
coloring problem based on the proof of four-color the-
orem. Solving NP-hard problems by DNA computing
is very important for understanding of the new com-
puter paradigm. However, current algorithms often
need a large number of DNA strands to encode the
problem. Comparatively, our algorithm needs a small
number of DNA strands (67) to encode an n-region
eraph and needs about R 13 operations, which re-
duced working load when compared with previous
O(n+m) and O (og (n)+ n). DNA computing
has extreme parallelism when solving NP-hard prob-
lem. How to use this parallelism is another problem.
Although many algorithms have polynomial time,
they often need exponentially increasing molecules
with the growing of problems™ size and also the reso-
lution spaces are generated by complicated operations.
Our algorithm avoids these problems, big-size prob-
lems can be resolved by a small quantity of encoding

molecules and relatively few experimental operations
under our experimental frame. However, the size of
solution spaces is difficult to estimate in our method,
perhaps it needs more graph theory knowledge. It can
be regarded as a general graph problem: how many
ribs and how many rib groups are there for a specific
graph 2 Moreover, due to the proof of four-coloring
theorem is based on the three-coloring of triangula-
tions, our DNA algorithm of three-coloring may be
used as an lllumination to find proof of four-color the-
orem by DNA computing.
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